

Long-Short Trading Strategy
Using Deep Learning

•CURIC•
Author

Sameer Singh

Published by CityU Research and Investment Club

THE FINAL PAGE OF THIS REPORT CONTAINS A DETAILED DISCLAIMER

The content and opinions in this report are written by a university student from the CityU Student Research &
Investment Club, and thus are for reference only. CityU Student Research & Investment Club is not responsible for
any direct or indirect loss resulting from decisions made based on this report. The opinions in this report constitute
the opinion of the CityU Student Research & Investment Club and do not constitute the opinion of the City University
of Hong Kong nor any governing or student body or department under the University.

© CityU Student Research & Investment Club (All Figures and Content) 2

Table of Contents
1. INTRODUCTION .. 3

2. LITERATURE REVIEW .. 5

2.1 ARTIFICIAL NEURAL NETWORK (ANN) ... 5

2.2 RECURRENT NEURAL NETWORK (RNN) .. 6

2.3 LONG-SHORT-TERM MEMORY (LSTM) ... 7

2.4 SUMMARY .. 9

3. NEURAL NETWORK DEVELOPMENT .. 9

3.1 LIBRARIES .. 10

3.2 WORKFLOW .. 11

3.2.1 Data Preparation ... 11

3.2.2 Constructing the Neural Network .. 13

3.2.3 Learning ... 16

4. TESTING ON SPECIFIC COMPANIES .. 18

4.1 MODEL PERFORMANCE ON INTEL CORPORATION [INTC] .. 19

4.2 MODEL PERFORMANCE ON HOME DEPOT [HD] ... 20

5. TRADING STRATEGY .. 22

5.1 STRATEGY ALGORITHM .. 22

5.2 BACKTESTING ... 23

5.2.1 Evaluation Metrics ... 24

5.2.2 Testing Parameters .. 24

5.2.3 Case I - Trading Performance on INTC .. 25

5.2.4 Case II - Trading Performance on HD .. 28

5.2.5 Testing Performance on Other Companies ... 31

6. CONCLUSION & FURTHER DEVELOPMENTS ... 32

6.1 FURTHER DEVELOPMENTS ... 32

APPENDIX ... 34

© CityU Student Research & Investment Club (All Figures and Content) 3

1. Introduction

Artificial Intelligence (AI) is a term that sounds familiar to everyone in this day and age. The world

is surrounded by some or the other application of AI and knowingly or unknowingly, most people

make use of them in their everyday lives. The recommendations for videos, music and movies on

YouTube, Spotify and Netflix, the ‘explore’ feature on Instagram, Siri on iPhone or Google

Assistant on Android phones, the facial recognition software on smartphones – all these are

features powered by AI that people come across regularly. More complex systems include self-

driving cars, recommendation systems, question answering systems, robots, intelligent home

appliances et cetera. 83% of the businesses say that AI is a strategic priority for their growth

(Columbus, L., 2017)1. As of 2018, the field was valued at $21.46 billion and is likely to reach

$190.61 billion by 2025 (“Artificial Intelligence Market by Offering”, n.d.)2, giving it a massive

CAGR of 36.62%. It is not surprising to say that AI is one of the most widely discussed and

researched topics today, with its capabilities being expanded to almost every field there is, and

financial services is one such field. Asset management firms are exploring possibilities of using

complex AI algorithms to make investment decisions and find new opportunities. Commercial

banks use AI to check a person’s credit score before approving a loan request. Individual investors

use recommendation systems that recommend stocks based on their past investment decisions and

market state. Whilst these are just a few examples of numerous applications currently being used,

the possibilities are endless.

In this report, I attempt to make use of this rapidly growing field to design an algorithmic trading

strategy that uses Deep Learning techniques. I construct a model to predict the Open and Close

price for the next day based on the present day’s Open, Close, High, Low prices and the Volume

of shares traded. The strategy then checks if the stock price is supposed to increase (Close > Open)

or decrease (Open > Close) based on the predictions made. This increase/decrease will indicate a

1 Columbus, L. (2017, September 10). How Artificial Intelligence Is Revolutionizing Business In 2017. Forbes.

Retrieved 2020, from https://www.forbes.com/sites/louiscolumbus/2017/09/10/how-artificial-intelligence-
is-revolutionizing-business-in-2017/#5e981ba55463

2 Artificial Intelligence Market by Offering (Hardware, Software, Services), Technology (Machine Learning, Natural
Language Processing, Context-Aware Computing, Computer Vision), End-User Industry, and Geography –
Global Forecast to 2025 (Rep.). (n.d.). doi:https://www.marketsandmarkets.com/Market-Reports/artificial-
intelligence-market-74851580.html

© CityU Student Research & Investment Club (All Figures and Content) 4

long/short position on that stock. This model is a Neural Network that has a Long-Short-Term

Memory architecture and is trained on the SPDR S&P 500 (NYSEARCA: SPY) data from 1995

until 2015. The SPDR S&P 500 is an ETF that tracks the S&P 500, hence giving an indication of

the whole market position in general. The model will be backested on historical price data of

various companies from 2010 until mid-2020.

In the following sections, I will start by discussing the theory and working of neural networks

(Section 2). After this, in the main text of the report, I will demonstrate the development process

of the strategy in detail using code snippets, and discuss the various libraries used and walk through

each stage of the program development from scratch (Section 3 and 4). Moving on, I will define

the trading strategy in detail, lay out the evaluation metrics and backtesting parameters before

finally testing the strategy on Intel Corporation and Home Depot Inc., followed by a detailed

discussion on the returns and the overall performance of the algorithm (Section 5). This section

also includes test results of the strategy on 100 randomly selected S&P 500 stocks. I will finally

conclude the report by discussing some improvements that can be made in order to make the

algorithm more robust (Section 6). Even though it is advisable to go through each section in order

to absorb the full essence of the report, readers can focus solely on particular sections as per their

interests:

• Section 2 is an introduction to advanced AI concepts, suitable for people interested in the

theory of Neural Networks.

• Section 3 and 4 are for those interested in programming, it will give a good idea of the

general workflow of developing an AI system. This section will point the readers to

resources that they can use to build their own programs.

• Section 5 is the Finance intensive section. All previous sections are a build up to this one.

Suitable for those who are curious about the trading algorithm and its performance based

on real market data.

The appendix at the end of the report is useful for interested readers as it contains articles and blogs

that helped me understand the concepts used in this report. It also contains the source code to the

algorithm, results of the backtesting as well as the predictions of prices made by the model.

© CityU Student Research & Investment Club (All Figures and Content) 5

The purpose of this report is to present the idea behind an algorithmic trading strategy. I also aim

to demonstrate the development of the seemingly complex concept of neural networks and its

possible application in finance.

2. Literature Review

Here I will discuss the base of my strategy: the neural network. This will help readers understand

the technology behind the strategy.

I will start by explaining what Artificial Neural Networks (ANN) are, the motivation behind their

development and their limitations. Following which, I will dive deeper into the ANNs by

discussing Recurrent Neural Networks (RNN) and its Long-Short-Term Memory (LSTM)

architecture.

2.1 Artificial Neural Network (ANN)

In laymen terms, the purpose of artificial intelligence is to make machines learn and make

decisions like humans do. Humans do this using millions of interconnected cells in the nervous

system called neurons. These neurons communicate with one another in unique ways and transmit

information from the brain to various parts of our body. The brain is what it is due to the structural

and functional properties of these interconnected neurons.

Since the nervous system is what helps humans become intelligent, researchers found it only

natural to have a similar system for computers that would help them become more intelligent. Thus

began the development of the Artificial Neural Networks for machines that would help achieve

Artificial Intelligence. ANN is the building block of every complex AI system. It is nothing but a

network of connected neurons, called nodes. Figure 1 visualizes an ANN with 2 hidden layers:

© CityU Student Research & Investment Club (All Figures and Content) 6

Figure 1: ANN with 2 hidden layers (Source)

As you can see from figure 1, a typical ANN consists of nodes (the circles) distributed across

various layers. There are 3 layers in every network: input, hidden and output; responsible for

accepting the inputs, processing the inputs and displaying the results respectively. The number of

input and output nodes depend on the number of input and output parameters, while the number

of nodes in the hidden layers depend on the complexity of the problem. Additionally, the number

of hidden layers also depend on the complexity of the problem while there are always one input

and one output layer in each ANN. The nodes in one layer are connected to every node in the

subsequent layer, each of these connections have a specific weight attached to them which help in

mapping the inputs to the output. The final values of these weights are iteratively adjusted through

the training process. Thus, the main purpose of the network is to learn weights that would

appropriately map the inputs to outputs.

The working of an ANN is beyond the scope of this report, interested readers may refer to resources

mentioned in Appendix I.

2.2 Recurrent Neural Network (RNN)

A major drawback of ANN is its parameter independence. A predicted output at time t (Yt) only

depends on the input parameters (Xt) at that given time, the network does not consider the effect of

any previous input. Many real-world tasks such as sentence prediction, pattern recognition, time

series analysis et cetera, are optimized only by considering the effect of previous data. For instance,

© CityU Student Research & Investment Club (All Figures and Content) 7

in order to predict the stock price for Friday, based on Thursday’s inputs, it would make sense to

consider the price movements of Wednesday too. Traditional ANNs do not do this.

Recurrent Neural Networks were designed to tackle this problem. RNN is a special type of ANN

which has a recurring connection to itself. This self-loop mechanism helps nodes consider the

previous state of the network while calculating the current output. This gives the network a sense

of time. Figure 2 shows a simplistic diagram of an RNN:

Figure 2: RNN (Source)

The network maintains a hidden state vector H which is passed from one node to the other. This is

the “memory” of the network containing information about the previous output. This means that

the output Yt at time t is based on the input Xt as well as the hidden state vector Ht. This Ht is based

upon Ht-1 which in turn is based upon Ht-2 which of course is based upon Ht-3 and so on. This way,

all the outputs partially take what has happened prior to the current time into account.

Again, the working of RNNs is beyond the scope of this report, interested readers may refer to the

Appendix I.

2.3 Long-Short-Term Memory (LSTM)

As mentioned above, RNN gives neural network a memory which optimizes many real-world

tasks. This works very well for tasks that do not deal with long sequence of data. For instance,

RNN would work well when we are predicting the stock price for Friday using Thursday’s inputs

and considering price movements on Wednesday and Tuesday. However, estimates about price,

earnings, sales et cetera, are typically made by considering performance of many years prior. The

strategy presented in this report also trains the model on the market data for 20 years. When the

© CityU Student Research & Investment Club (All Figures and Content) 8

data that is to be processed is in such large quantities, RNN’s memory falls short in its capabilities.

The self-loop mechanism only lets the network have short-term memory due to a limitation termed

as vanishing gradient. Now, theoretically when calculating the output Yt at time t, the hidden state

vector Ht should contain information about ALL of the past computations starting from t=0.

However, as the hidden state vector is iteratively calculated at each epoch, the initial information

starts losing its significance, thus making the state vector carry information only about the most

recent iterations.

This is where LSTM comes into play. LSTM is a special type of RNN that enables the network to

have long term memory. The core functionality of an LSTM network is the same as RNN: predict

an output using the input provided and the hidden state, compute a new value of hidden state based

on the output and pass it along to the next node. The difference lies in the node architecture. Figure

3 shows a single node of an RNN network and figure 4 shows the cell architecture of a single

LSTM:

As you can see from Figure 3 and 4, the cell of a LSTM network is much more complicated than

that of the RNN network. The most important part of the former is the cell state that it maintains

along with the hidden state vector. The cell state runs across one iteration to the next containing

information about the past iterations. However, unlike the hidden cell state in RNN which

Figure 3: A single RNN cell

Figure 4: A single LSTM cell

© CityU Student Research & Investment Club (All Figures and Content) 9

processes all information from each iteration using a single tanh function, the cell state is selective.

It chooses to store the important information and forget any irrelevant ones, thus increasing the

quality of information stored and the longevity of the memory. It does so by using 3 gates as shown

in the figure: forget, input and output gate. It uses sigmoid and tanh functions, the hidden and

cell states from previous cell, inputs and a series of addition and multiplication to compute the

output, new cell state and a new hidden state.

Most state-of-the-art results in sequence prediction tasks such as time series analysis, natural

language processing et cetera, make use of LSTM Networks.

For details of how LSTM works, please refer to the Appendix I.

2.4 Summary

This section described three types of Neural Networks that are used in real world applications:

ANN, RNN and LSTM. ANN have no memory at all and one set of output does not depend on any

previous output. RNN, on the other hand, maintains a hidden cell state using a self-looping

mechanism, giving the network a memory. The output in each iteration depends on this hidden

state and the input parameters. However, this memory is short lived due to the vanishing gradient.

LSTM takes this one step further and maintains an additional cell state which selectively adds

important information and forgets unimportant information, giving the network a much longer

memory.

3. Neural Network Development

In this section, I will discuss the neural network model development, which is the driving force

behind the trading strategy. I have used Python 3.7 as the programming language and Jupyter

Notebook as the environment for development. I will include the screenshots of selected portions

of the code, for the full source code, please check the GitHub link provided in Appendix IV.

© CityU Student Research & Investment Club (All Figures and Content) 10

3.1 Libraries

Figure 5: Libraries

Figure 5 shows all the libraries needed to develop the program. As you can see, I have divided

them into 4 groups.

Group 1

Group 1 contains all the general helper libraries: pandas for data processing and storage, numpy

for scientific computation, matplotlib for data visualization, yfinance for retrieving stock price data

from Yahoo finance, math for easily applying mathematical functions like log, datetime for

retrieving today’s and tomorrow’s dates and random for selecting random companies from the

S&P 500 to test the algorithm.

Group 2

Group 2 contains the libraries used for constructing the neural network. I use Keras, a high-level

neural net library. It works as an API for the development of deep learning models. Keras can be

thought of as a front-end library running on top of Tensorflow, Microsoft Cognitive Toolkit, R,

Theano or PlaidML. In this project, it runs over Tensorflow. Even though it does not provide as

© CityU Student Research & Investment Club (All Figures and Content) 11

much flexibility in the details of the model, it makes the development much simpler as compared

to using Tensorflow or any other deep learning library.

Group 3

Group 3 contains all the helper libraries for the deep learning model. I have imported various

functions from scikit-learn, an open-source machine learning library. These functions will help

process the inputs and outputs for the neural network and help evaluate the model performance.

Group 4

Finally, Group 4 contains the two libraries I use for web scraping. This is used only to extract the

beta for various securities from Yahoo finance directly.

3.2 Workflow

Now that the various libraries have been discussed, the following paragraphs will discuss on how

these are used in order to construct the model and evaluate its performance.

Since the aim is to build a model that can be implemented on stocks of various companies, I

decided to train my model on market data. This will generalize the model and not inclined towards

any one industry.

3.2.1 Data Preparation

The first requirement towards creating any neural network is to prepare the data. For this strategy,

the dataset to be used is historical prices of an ETF tracking the S&P 500: The SPDR S&P 500

trust (NYSEARCA: SPY) with the timeframe set from January 1995 to January 2015. This

timeframe will cover the .com bubble burst of ’02 and the ’08 financial crisis, providing enough

variations for the model to learn.

This data can be downloaded using yfinance which returns the daily High, Low, Open, Close and

Adjusted Close prices. Figure 6 shows the price movements of the data.

© CityU Student Research & Investment Club (All Figures and Content) 12

Figure 6: S&P 500 from 1995 to 2015

I have added two more columns: “Open next day” and “Close next day”. Figure 7 shows the raw

data that will be used for the model.

Figure 7: Raw Data

The first 5 columns of this data will be used as the inputs and the last two columns will serve as

the outputs. As seen, the integer value of volume is exponentially larger than all the other 4 input

……

© CityU Student Research & Investment Club (All Figures and Content) 13

parameters. It would therefore make sense to normalize these values to represent each parameter

in the same range. This process is known as feature scaling, which is achieved using the

MinMaxScalar class of the scikit-learn library (Group 3). An object of the class is created, and the

input parameters are fit into it. This object then transforms every value to number between 0 and

1. The same is applied to the output parameters too. The same object can later be used to transform

these scaled input and output values to their original values.

Figure 8 shows the scaled values for trading day 1995-01-06 (see figure 7).

Figure 8: Scaled Inputs and Outputs

• data[‘x’] corresponds to the inputs: an array of 5 elements corresponding to Open, Close,

High, Low and Volume respectively.

• data[‘y’] corresponds to the outputs: an array of 2 elements corresponding to High next

day and Low next day respectively.

These are one of 5035 such arrays used for training.

3.2.2 Constructing the Neural Network

Now that the pre-processing of the data is complete, the next step is to construct a neural network

that we can feed the data into. The model used in this strategy is a simple 3-layer neural network:

one input layer, one hidden layer and one output layer. The input and output layers will have 5 and

2 neurons respectively. The most crucial part of the network, the hidden layer will consist of 75

LSTM cells. The model would look something like this:

Open Close High Low Volume

Open next day Close Next Day

© CityU Student Research & Investment Club (All Figures and Content) 14

This model is created using Keras (Group 2). Figure 10 shows the Python code for the same:

Figure 10: Keras Code for the model

The layers are defined in the second and third line. In the LSTM layer, the sigmoid function is used

for the input, forget and output operations while the tanh function is used for calculating the hidden

state. These functions play a crucial role in calculating the cell state of the network.

The compile function (line 5) establishes 3 important model parameters: Loss function: also called

the ‘cost function’, measures how expensive a particular neural network is based on the set of

weights used. As mentioned in section 2.1, the purpose of a neural network is to learn weights

which would appropriately map inputs to outputs. Another way of saying this is: the purpose of a

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Open

Close

High

Low

Volume

Predicted Open Next Day

Predicted Close Next Day

….

75 cells

….

Figure 9: Neural Network Architecture

© CityU Student Research & Investment Club (All Figures and Content) 15

neural network is to find weights which result in the lowest loss function. Here, the loss functions

used is the Mean Squared Error (MSE). Formula for MSE is:

𝑀𝑆𝐸 = 	
1
𝑛	((𝑦! −	𝑦,!)"

#

!$%

Where 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠

 𝑦! = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑂𝑢𝑡𝑝𝑢𝑡	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡	𝑖

 𝑦,! = 𝐴𝑐𝑡𝑢𝑎𝑙	𝑂𝑢𝑡𝑝𝑢𝑡	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡	𝑖

The term in the parenthesis defines the deviation of a predicted output from the actual output at a

particular datapoint. The average of sum of the squared of this deviation gives the Mean Squared

Error. Squaring the deviation gives more weight to larger errors made by the model, making it an

appropriate choice for evaluating the loss. It also measures the accuracy of the model, lesser the

MSE more accurate the model is.

The second parameter is the Optimizer. The optimizer is an algorithm that defines how exactly

the weights of the network are modified based on the loss function. It can be seen as the entity that

does all the legwork to make the model as accurate as possible. The algorithm used in this network

is called Adam Optimizer.

The final parameter defined is the Metric. A metric is a function that evaluates the performance

of a neural network after each iteration. It can be seen as a supervisor that judges the optimizer’s

work. Similar to the loss function, a metric also measures the accuracy of the model. Lesser the

better. The metric used here is the Mean Absolute Error (MAE) whose formula is given by:

𝑀𝐴𝐸 =	
1
𝑛	(|	𝑦! −	𝑦,! 	|

#

!$%

The MAE is simply the average of the absolute value of the deviation of the model. It gives an

idea about the total deviation of the predicted values from the actual outputs.

The architecture of the network along with the 3 parameters mentioned constitute the minimum

requirements for any neural network regardless of the task. Additional modifications can be made

at the discretion of the developer. Here, I have added a callback function (last line Figure 10)

which monitors the loss function. Ideally, due to the work of the optimizer, the loss function should

decrease in value after every iteration. However, due to various reasons, a situation can arise where

© CityU Student Research & Investment Club (All Figures and Content) 16

that value increases for a certain number of iterations indicating that the minimum has been

reached. The callback function would terminate training at this point of minimum loss.

This concludes the construction of the LSTM Neural Network used in this strategy. The next step

is training this network on the SPY data prepared in section 3.2.1.

3.2.3 Learning

The neural network is now ready to accept the data that we have initially prepared (5035 arrays of

transformed input and output values) and learn how the price varies based on the previous day’s

price movements. There are two steps involved in the learning process: training and testing. On

one hand, during the training phase, the network is provided access to the inputs (arrays of 5

elements) as well as the outputs (arrays of 2 elements) using which it can iteratively adjust its

weights by minimizing the loss function.

On the other hand, the testing phase is the “exam”. Here, the network is provided with a new set

of inputs based on which it makes predictions using the weights learned during the training phase.

These predictions are then compared to the corresponding true values in order to evaluate how

well the model has learned.

The first step therefore, is to split the original data into train and test dataset. This is done using

scikit-learn’s train_test_split function (figure 11).

Figure 11: Splitting data into train and test

As shown in the figure, the test size is set as 0.25. This means that 75% of the data will be used by

the network to learn appropriate weights and the rest will be used to evaluate its performance. The

function randomly chooses 3776 (75% of 5035) rows from data[‘x’] and data[‘y’] and stores it into

x_train and y_train respectively. The rest is stored in x_test and y_test. This type of learning where

the model learns using both inputs and outputs is called supervised learning.

After splitting, the next step is to pass x_train and y_train to the model and run it over a number

of iterations. Figure 12 shows the code to do this.

Figure 12: passing data to model

© CityU Student Research & Investment Club (All Figures and Content) 17

We set the model to run a maximum of 100 iterations to learn the most optimal weights. Note that

this is the maximum number of iterations, the training will be terminated if the loss function

increases during the process due to the callback function defined in section 3.3.2. Here, the training

stopped at epoch 23 (figure 13).

Figure 13: Model Training

As you can notice, the loss function has reduced from a value of 0.0479 in the first iteration to

0.000059 in the last iteration. The graph shows the log of the loss function at each iteration, a value

that is consistently decreasing.

At this point, the network has learned how to predict the Open and Close prices for the next day

to the best of its capabilities. Putting this to test, the “x_test” array is passed to the network and

the outputs are compared with the true values. In order to evaluate the model’s performance, I use

3 metrics:

1. Mean Absolute Error: described previously

2. Mean Squared Error: described previously

3. R2 Score: Also called the coefficient of determination, is a common metric used to

evaluate regression models. The value suggests the percentage of the variance in the output

that the input can explain collectively.

The following table summarizes the performance for each output.

…..

© CityU Student Research & Investment Club (All Figures and Content) 18

With a MAE of 0.7 for Open and 1.1 for Close and MSE of 1.02 for Open and 2.4 for Close, the

predictions for Open prices are slightly better than for the Close prices. However, in general the

error values are low enough for the model to be labelled a success. The R2 value of 0.99 suggests

than 99% of the variation in Open and Close prices for the next can be explained by the Open,

Close, High, Low prices and Volume of shares traded of the current day.

The model has now successfully learned how to predict the Open and Close prices for any day

using the 5 parameters from the previous day and is ready to be applied to stocks of different

companies.

4. Testing on Specific Companies

In this section, I will test the model’s predictions on specific companies by predicting the Open

and Close prices from 1st January 2010 to 30th May 2020. This timeframe will include the 2020

market crash, putting the model to a more rigorous test.

As demonstrated in the previous section, the model learned weights based on the SPY data and

produced pleasingly accurate predictions on the testing data. It will be interesting to explore how

it will perform on a company’s stock.

For this, I will pick two securities from different industries. The first one is a very prestigious Wall

Street darling from the Information Technology industry: Intel Corporation (NASDAQ: INTC).

The second is another market giant from the Consumer Discretionary industry: Home Depot

(NYSE: HD).

The stock price data will of course be downloaded using yfinance from 1st Jan 2010 until 30th May

2020; this will serve as our testing data. All the data pre-processing steps mentioned in section

Metric Open Close

MAE 0.7102541699761716 1.1004447974583003

MSE 1.028312708498809 2.4780122319301032

R2 0.9990199291650923 0.9976389885063128

© CityU Student Research & Investment Club (All Figures and Content) 19

2.3.1 will be applied to this data: creating ‘open_next_day’ and ‘close_next_day’ columns, feature

scaling the inputs and storing them in an array. However, this time, the output data will never be

passed to the network and will only be used to compute the model’s predictions.

4.1 Model Performance on Intel Corporation [INTC]

After running the model on this data, the same 3 metrics are used for its evaluation and are

summarized in the table below:

Metric Open Close

MAE 0.29984347439212805 0.4434707765699388

MSE 0.2366591654251627 0.5132274590953694

R2 0.9982822916931641 0.9962831711994932

The network’s performance is better on INTC than it was on SPY. Both MSE and MAE are lower

for Open and Close while R2, as expected is the same. Figure 14 visualizes the performance for

the past 100 days (for the plot of the whole timeframe, refer to Appendix II):

Figure 14: Model Performance on INTC

© CityU Student Research & Investment Club (All Figures and Content) 20

The first row shows a scatter plot with true values on the x-axis and predicted values on the y-axis.

As you can see, even during the 2020 market crash, the scatter plot displays a somewhat linear

relationship. Joining forces with the low evaluation metrics, this further stresses on the accuracy

of the model.

The second row plots the predicted (orange) and the true (blue) values for INTC for the past 100

days. It is clear that the predicted values follow the same general direction of the true values

pointing to satisfying performance of the model.

4.2 Model Performance on Home Depot [HD]

The following table summarizes the model’s performance on HD.

Metric Open Close

MAE 1.0686788586780012 1.3628216446989043

MSE 3.1279949879025626 5.049304219578166

R2 0.9992003693175584 0.9987107190506682

Here we see that the model has performed worse than it did on the SPY data. The MAE and MSE

for both Open and Close are higher than the SPY dataset while R2, as expected is the same. Despite

performing worse, the model still predicts the prices with satisfactory results as depicted by figure

15:

© CityU Student Research & Investment Club (All Figures and Content) 21

Figure 15: Model Performance on HD

Similar to INTC, the scatter plot again shows a more or less linear relationship between the true

and predicted values and the two follow the same general direction in the plot, hence giving a

positive indication of the model predictions.

If examined closely, the scatter plot is less scattered than that of INTC while the line plot seems to

be more closely related to the true values. This is in contradiction to the lower error values. A

possible explanation for this is: since the plots are visualizing 100 days prior to May 30th, 2020, it

covers the coronavirus market crash. The contradicting graphs suggest that Home Depot was

slightly less affected than Intel Corporation due to it, hence the predictions are more accurate in

these days.

In conclusion, we see that weights learned by the model on SPY data from 1995 to 2015 works

well when directly applied to stocks of different companies (in different industries) on a

completely different timeframe. Having proved that, it is ready to be tested on a trading strategy.

© CityU Student Research & Investment Club (All Figures and Content) 22

5. Trading Strategy

Now that the model has learned appropriate weights, and it has been established that these weights

can make reasonable predictions on different companies, it is finally time to use it on a trading

strategy. In this section, I will first be defining a long-short day trading strategy built around the

neural network’s ability to predict open and close prices for any particular day. I will then move

on to testing this strategy on historical price data of Intel Corp. and Home Depot Inc. and discuss

the performance in detail. I will also present the result of the algorithm on 100 randomly selected

companies from the S&P 500. This process of testing a trading strategy on past data is called

Backtesting. All sections prior to this have been a buildup leading to the actual strategy defined

in the coming sections.

5.1 Strategy Algorithm

As mentioned above, the strategy is of a long-short day trading type. Breaking this down, day

trading indicates that the algorithm will indulge in the buying and selling of stocks on a daily basis

i.e. it will not buy and hold as is done by long-term value investors. Long short indicates that the

algorithm will indulge in or attempt to both buy low first and then sell high i.e. going long when

the price appears to increase on a particular day as well as selling high and then buying low i.e.

short selling on days when the price appears to decline. This makes it a very aggressive trading

strategy. Moving on to the details, how does the algorithm decide when to go long or sell short?

This is where the neural network comes into play. The idea is that once the market closes on a

particular day (4pm EST for US), the neural network will predict the Open and Close prices for

the next trading day based on the current day’s Open, Close, High, Low prices and Volume of

shares traded. Now these two values will indicate if the stock price will increase or decrease the

next day. If the predicted Open price is higher than the predicted Close price, then according to

the model, the stock price will be decreasing, giving a short signal. On the other hand, if the

predicted Close price is higher than the predicted Open price, the model gives a long signal.

Needless to say, the strategy described is not for the faint-hearted in that it contains a considerable

degree of risk. Now the risk of unlimited loss associated with short selling is already contained as

there is no day in which the shares will not be bought back, even if the actual price is increased.

© CityU Student Research & Investment Club (All Figures and Content) 23

In order to further control the risk, only 100 shares will be sold short during those days regardless

of the amount of capital in hand. On days when a long signal is placed, the number of shares bought

will depend on the amount of capital at hand (initial capital + net gain). This will result in more

and more money invested as time passes if the strategy seems to be successful and less money

invested if the strategy seems to be generating losses. No shares will be bought on margin.

The following flow diagram summarizes the strategy:

Figure 16: Trading Algorithm

5.2 Backtesting

Now that the strategy is defined, it is time to explore the kind of returns it will produce when

applied to real companies. I will backtest it on the two companies mentioned in the previous

section: Intel Corporation and Home Depot, followed by a detailed discussion of the returns

produced versus the market and the dollar value of the daily profit/loss. I will conclude my

discussion on this topic by testing the program on 100 randomly selected companies from the S&P

500 Index.

Note that the calculation of returns will ignore transaction costs, income taxes as well as dividend

returns.

© CityU Student Research & Investment Club (All Figures and Content) 24

5.2.1 Evaluation Metrics

Before discussing these results, there are a few metrics that are worth mentioning in order to better

understand the discussion. These metrics will be used to evaluate the model’s performance.

1. Total Return: Total Return is the percentage gain or loss of the initial capital incurred

during the testing timeframe.

2. Annualized Return: This is a common metric used to measure how well an investment

performs on an annual basis. It is the geometric average of the amount of money earned. It

is calculated as:

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝑅𝑒𝑡𝑢𝑟𝑛 = 	 (1 + 𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑡𝑢𝑟𝑛)% &!'()*+'(, − 1

3. Standard Deviation: The standard deviation is a universally accepted measure of the risk

of an investment. It measures the extent to which the daily returns deviate from the mean.

Higher the deviation, higher the risk.

4. Sharpe Ratio: Sharpe Ratio is a ratio that helps understand the return of a portfolio

compared to its risk. It is a ratio of the return premium of the investment and its standard

deviation. It is calculated as:

𝑆ℎ𝑎𝑟𝑝𝑒	𝑅𝑎𝑡𝑖𝑜 = 	
𝑅- − 𝑅.
𝜎-

𝑊ℎ𝑒𝑟𝑒,	

𝑅-	 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝑅𝑒𝑡𝑢𝑟𝑛

𝑅. = 𝑅𝑖𝑠𝑘	𝐹𝑟𝑒𝑒	𝑅𝑎𝑡𝑒

𝜎- = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

5.2.2 Testing Parameters

The timeframe used will be 1st January, 2010 to 30th May, 2020, or roughly 10.5 years (10 years

and 5 months). In order to calculate the real rate of return, the average annual inflation rate for this

© CityU Student Research & Investment Club (All Figures and Content) 25

period will be taken as 1.7% (“Current US Inflation Rates”, 2020)3. The risk-free rate used in the

calculation of the Sharpe Ratio is equal to the 10 Year US Treasury Yield of 0.94%. Note that

this value is alarmingly low compared to historical standards due to the 2020 market crash. The

benchmark for the performance will be the S&P 500 index; with an annualized return of 12.22%

in the given timeframe. The average annualized return for the same over the past 90 years is 9.8%

(Santoli, M., 2017)4. The initial capital will be set at $100,000.

5.2.3 Case I - Trading Performance on Inter Corporation [INTC]

After running the algorithm on INTC price data, we get the following statistics:

Figure 17: Trading Statistics for INTC

Before beginning the analysis on returns, an observation is worth mentioning it interesting to note

that out of 2546 trading days, 1196 i.e. about 46% of the days resulted in a loss. This high percent

of loss further stresses upon the extreme risk associated with the algorithm. It also shines a light

on the neural network’s limitation; a loss means that the network predicted that price will drop on

a particular day but in reality, it increased or vice versa.

3 Current US Inflation Rates: 2009-2020. (2020, June 10). Retrieved June 17, 2020, from

https://www.usinflationcalculator.com/inflation/current-inflation-rates/

4 Santoli, M. (2017, June 18). INVESTING The S&P 500 has already met its average return for a full year, but

don’t expect it to stay here. CNBC. Retrieved 2020, from https://www.cnbc.com/2017/06/18/the-sp-500-has-
already-met-its-average-return-for-a-full-year.html

© CityU Student Research & Investment Club (All Figures and Content) 26

Percentage return analysis

Moving forward to the main discussion. After 10.5 years, the initial $100,000 dollars invested will

turn into $484,555.48 giving a total return of 384.56% or a 16.22% annualized return. This return

is extremely impressive for such a long period of time. Compared to the benchmark return of

12.22%, the algorithm beats the market by a good 4%. After adjusting for inflation, the real rate

of return is 14.52%. The well-known risk-return trade-off hold true here as the standard deviation

(SD), representing the volatility of this return has a value of 1.3%, which is slightly higher than

the market SD of 1.08%.

Figure 18 plots the annual returns produced by the algorithm in comparison with the market:

Figure 18: Algorithm vs S&P

This figure provides for an interesting analysis. In the first year, 2010, the algorithm suffered a

loss while the S&P gained about 15%. However, the algorithm bounced back tremendously in the

following year with a return of over 30% while the S&P fell. It was then a repeat of 2010 in 2012

as the algorithm produced a negative return contrary to what S&P did. The following five years

were pleasing for the algorithm as it recorded healthy profits and beat the market in 3 of them.

2018 was grim with both recording slight losses before making healthy recoveries in 2019. So far

in 2020, S&P took a major hit due to the coronavirus crash while the algorithm surprisingly has

recorded a healthy return of over 20%.

© CityU Student Research & Investment Club (All Figures and Content) 27

In conclusion, the algorithm beat the market in 5 years from 2010 to 2019, while also beating it

currently during 2020. However, when it did get beaten by the market, the difference in returns

was smaller compared to its better years, resulting in an overall larger return. There does not seem

to be a direct correlation between the two returns. There were 4 years when the market and the

algorithm returns moved in opposite directions out of which 3 were consecutive years

(2010,11,12). This goes against the nature of INTC, which has a beta of 0.91 indicating that the

stock moves very closely with the market in general.

Dollar value analysis

In order to further investigate the performance of the algorithm, I will analyze the metric that most

people understand better: dollar profit or loss. As per the design of the algorithm, two trades take

place every single day resulting in a profit or a loss. Figure 19 shows two graphs which will be the

base of this discussion:

Figure 19: INTC Dollar Profit/Loss

The graph on the top plots daily profit or loss and the bottom graph shows how our initial $100,000

moved during the trading period.

As clearly shown, the capital value increases gradually to reach a value of about $484k by the end

of the trading period. Meanwhile, the driver behind this growth: the daily gains swing drastically

between positive and negative values. This swinging intensifies towards the end of the trading

© CityU Student Research & Investment Club (All Figures and Content) 28

period with higher frequencies being noted at the start of 2019. A possible explanation for this is:

according to the algorithm, all accumulated profits are reinvested during the days when a long

signal is generated, hence resulting in larger gains (or losses if the model produced a wrong signal).

These frequencies reach their maximum values in 2020, interestingly coinciding with the

coronavirus market crash; during which, the algorithm produced a profit of $46,164 on 13th March

and a loss of $24,858 merely 3 days later on 16th March. These were the largest single day profit

and loss respectively during the 10.5 years. This was expected since the algorithm was trading

regularly with larger amounts of money at times when the financial community took a step back

and moved away from the market.

5.2.4 Case II - Trading Performance on Home Depot [HD]

Figure 20: Algorithm Performance on HD

 In this case, the model produced a short signal for more days than a long. This is in stark contrast

with the previous case which only had 2 days of short selling. However it should be noted that out

of 2611 trading days, 1282 days or 49% of the days resulted in a loss. This number raises

possibilities of further development needs in the neural network.

Percentage return analysis

The algorithm when applied to NYSE: HD for 10.5 years turned the initial $100,000 to

$303,189.69, a total profit of $203,189.69 or 203.19%. This gives a respectable annualized return

of 11.14%. While this return is quite high for such a long period of time and would please many

investors, it still fails to beat the market by 1.08%. Needless to say, the volatility of these returns

(risk) is lower than the market’s volatility indicated by the value of SD of 0.83%.

© CityU Student Research & Investment Club (All Figures and Content) 29

Figure 21 plots the annual returns produced by the algorithm as compared to S&P 500.

 The first three years (2010-12) were remarkable for the algorithm as it produced astonishingly

large returns with its peak almost hitting the 50% mark in 2012. However, this explosive start did

not last long as it was followed by 3 consecutive years of decreasing returns with the algorithm

producing a loss in 2015, a year when the S&P also produced an underwhelming result. It made a

decent recovery in 2016, returning almost 10%. However, this recovery did not last, as the returns

came crashing back to produce a loss in 2 of the next 3 years (produced near 0% return in the

third). So far in 2020 during the market crash, the algorithm has performed extremely well and

returned more than 10%.

In conclusion, the pleasing annualized return of 11.14% is largely due to explosive first 3 years.

After this, the algorithm did not return over 10% in any subsequent years (except so far in 2020).

The algorithm beat the market 4 times in 10 years from 2010 to 2019, 3 of which were the inital

first three years. Fourth was when the S&P incurred a loss and the algorithm produced a return of

nearly 0%. Lastly, similar to the previous case, there does not seem to be a direct correlation

between the two returns. They moved in the same direction in 5 out of 10 years. This observation

again is not in line with the value of the stock’s beta: 0.97.

Figure 21: Algorithm vs S&P 500

© CityU Student Research & Investment Club (All Figures and Content) 30

Dollar value profit/loss analysis

Figure 22 plots the daily profit/loss and the value of the initial capital over the trading period:

The dollar gains charts are rather awkward in this scenario. In the early years: 2010 until 2014,

there was a considerable amount of swinging between loss and profit on daily basis, which also

resulted in a steady increase of the initial capital. However, after 2014 the swinging subsided

drastically until 2020 except some big profits and losses here and there. This is in contrast with the

case of INTC, where the swinging gradually increased with time. A possible explanation for this

can be the difference between the process of short and long selling as per the algorithm. As

mentioned previously, a maximum of 100 shares are shorted on a particular day regardless of the

capital at hand. This limits the amount of profit or loss incurred on that day. On the other hand,

when a long signal is generated, all of the capital at hand is used to buy shares at the Open, hence

resulting in large profit/loss. In the case of INTC, there were merely 2 days in 10 years when the

shares were sold short therefore the large profits and losses were recorded each day. Meanwhile

in this case, there are 1393 days with a short signal. It is reasonable to assume that almost all of

these came after 2014, hence producing an almost flat profit/loss plot in Figure 22. This reflects

the defensive approach to short selling the algorithm takes.

Figure 22: HD Dollar Profit/Loss

© CityU Student Research & Investment Club (All Figures and Content) 31

5.2.5 Testing Performance on Other Companies

As demonstrated, the algorithm beats the market in case I and gets beaten in case II. In order to

have a more concrete picture of the strategy’s performance, I have backtested it on 100 randomly

selected stocks from the S&P 500 Index. Note that for companies that went public after 2010, the

timeframe for the backtest is from their IPO date until 30th May 2020.

Please refer to Appendix III to get a list of these 100 stocks and their evaluation metrics.

The following chart summarizes the returns:

Figure 23: 100 Company Backtest Returns

Let’s first look at the outstanding performers of this test. Out of 100, there were a total of 11 stocks

that beat the market return of 12.22%. The top 3 performers were Fortune Brands Home & Security

Inc. (NYSE: FBHS) with an enormous annualized return of 23.33%, Domino’s Pizza Inc. (NYSE:

DPZ) returning 21.16% and Mettler Toledo (NYSE: MTD) returning 20.88% annually. These were

also the only companies returning over 20% annualized return. The other market beaters included:

WW Grainger (16.31%), NextEra Energy (14.69%), AON (14.37%), S&P Global Inc. (14.01%),

Illinois Tool Works (12.98%), Intuitive Surgical Inc. (12.9%), Tractor Supply Company (12.73%)

and The Clorox Company (12.33%). Apart from these 11, there were 3 more companies: F5

Networks (9.88%), Duke Realty (10.79%) and Crown Castle International (12.17%) that returned

better than the market’s average annualized return over the past 90 years of 9.8%.

© CityU Student Research & Investment Club (All Figures and Content) 32

While these returns are amazing for such a long period of time and should please even the most

discerning of investors, these constitute only 14% of the testing companies. A more complete

picture shows that 43 of these 100 companies incurred a net loss over the 10.5 years. Amongst the

other 57 companies, 14 returned less than the average inflation rate of 1.7% , thus resulting in a

negative real rate of return – essentially, only 43 companies out of 100 returned a real profit.

There is a silver lining however: the losses were largely contained since the largest negative return

has a value of -6.13% for SL Green Realty. Additionally, 27 out of the 43 companies that produced

a loss produced a meagre loss of less than 1%.

6. Conclusion & Further Developments

In the real world, large investment firms use highly complex algorithms to make investment

decisions. The strategy presented in this report is one of the most basic use of AI techniques for

investment purposes. It can be used as a starting point for an algorithm to be used in the real world,

using it directly would most likely result in a disappointing result.

Having said that, the report does give a complete picture of how AI can be applied to the field of

finance. Sections 3,4 and 5 cover 3/4th of the steps in the algorithmic trading pipeline: Strategy

Identification, Program Development and Backtesting. The 4th step: Implementation is not in the

scope of this report. The results presented section 5.2 show some signs of promise indicated by

enormous annual returns when backtested on companies such as Fortune Brands Home & Security,

Domino’s Pizza, Mettler Toledo and Intel Corporation. However, with more than 50% of the

companies producing meagre returns, there is large room for improvement before it can be

considered a successful algorithm.

6.1 Further Developments

Selecting Companies

There are 12 companies in this report which beat the market when the algorithm was applied to

their stock. At this stage, there has not been a correlation established between returns and other

© CityU Student Research & Investment Club (All Figures and Content) 33

metrics of a particular stock. A deeper research can be conducted to find a relation between the

returns and metrics such as the Beta, MSE, MAE, PE Ratio, Market Cap et cetera. This can then

be used as a screen to filter out companies with the highest potential to produce whopping returns.

Neural Network

In the program development stage, the neural network designed is a very simple 3-layer network.

This architecture works for the purpose of this report, however, moving forward the network can

be made more robust. Inputs can be modified to include factors that affect a stock price such as

the interest rates, risk free rate, public sentiment et cetera. Extra layers can be added to add more

complexity and the nodes can be further modified.

Backtesting

As seen in section 5.2, all the backtesting was done programmatically on the Jupyter Notebook,

with around 9 functions being written for the whole process. This legwork can be avoided by using

an established algo-trading platform which provides the means to backtest a custom strategy. The

initial plan was to use Quantopian for the development, however they do not support python’s

Keras library which was used to develop the neural network so that idea was not adopted. Moving

forward, other platforms can be explored and used which support all the libraries required (figure

5).

© CityU Student Research & Investment Club (All Figures and Content) 34

APPENDIX

I. Neural Networks

Artificial Neural Networks (ANN)

https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/

https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9

Recurrent Neural Networks (RNN)

https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Long-Short-Term Memory (LSTM)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://brohrer.github.io/how_rnns_lstm_work.html

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-

44e9eb85bf21

https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-

lstm/

II. Model Performance

Model Prediction on INTC

© CityU Student Research & Investment Club (All Figures and Content) 35

Model Prediction on HD

III. Backtesting Result

Download CSV file containing the Backtesting result. The data is in the format: Ticker, Beta, Risk,

Sharpe Ratio, Return, Profit.

Download : Backtest_100_Stocks.csv

IV. Source Code

Github Link: https://github.com/SameerSinghDudi/LSTM-Stock_Market_Prediction-Quant2020

For those who don’t use Github, download zip file: LSTM Algo Trading.zip

I strongly suggest using the Jupyter Notebook (.ipynb) for your use as the strategy was developed

using it. For those who are not familiar with it, there are 8 python files (.py) containing the same

functions.

© CityU Student Research & Investment Club (All Figures and Content) 36

Reference List

Artificial Intelligence Market by Offering (Hardware, Software, Services), Technology (Machine
Learning, Natural Language Processing, Context-Aware Computing, Computer Vision),
End-User Industry, and Geography – Global Forecast to 2025 (Rep.). (n.d.).
doi:https://www.marketsandmarkets.com/Market-Reports/artificial-intelligence-market-
74851580.html

Columbus, L. (2017, September 10). How Artificial Intelligence Is Revolutionizing Business In

2017. Forbes. Retrieved 2020, from
https://www.forbes.com/sites/louiscolumbus/2017/09/10/how-artificial-intelligence-
isrevolutionizing-business-in-2017/#5e981ba55463

Current US Inflation Rates: 2009-2020. (2020, June 10). Retrieved June 17, 2020, from

https://www.usinflationcalculator.com/inflation/current-inflation-rates/

Santoli, M. (2017, June 18). INVESTING The S&P 500 has already met its average return
for a full year, but don’t expect it to stay here. CNBC. Retrieved 2020, from
https://www.cnbc.com/2017/06/18/the-sp-500-has-already-met-its-average-return-for-a-
full-year.html

© CityU Student Research & Investment Club (All Figures and Content) 37

DISCLAIMER

This report is produced by university student members of CityU Student Research & Investment Club (the Club). All
material presented in this report, unless otherwise specified, is under copyright of the Club. None of the material, nor
its content, nor any copy of it, may be altered in any way without the prior express written permission and approval
of the Club. All trademarks, service marks, and logos used in this report are trademarks or service marks of the Club.
The information, tools and materials presented in this report are for information purposes only and should not be used
or considered as an offer or a solicitation of an offer to sell or buy or subscribe to securities or other financial
instruments. The Club has not taken any measures to ensure that the opinions in the report are suitable for any
particular investor. This report does not constitute any form of legal, investment, taxation, or accounting advice, nor
does this report constitute a personal recommendation to you. Information and opinions presented in this report have
been obtained from or derived from sources which the Club believes to be reliable and appropriate but the Club makes
no representation as to their accuracy or completeness. The Club accepts no liability for loss arising from the use of
the material presented in this report. Due attention should be given to the fact that this report is written by university
students. This report is not to be relied upon in substitution for the exercise of independent judgement. The Club may
have issued in the past, and may issue in the future, other communications and reports which are inconsistent with,
and reach different conclusions from, the information presented in this report. Such communications and reports
represent the different assumptions, views, and analytical methods of the analysts who prepared them. The Club is not
under an obligation to ensure that such communications and reports are brought to the attention to any recipient of
this report. This report, and all other publications by the Club do not constitute the opinion of the City University of
Hong Kong, nor any governing or student body or department under the University aside from the Club itself. This
report may provide the addresses of, or contain hyperlinks to, websites. Except to the extent to which the report refers
to website material of the Club, the Club has not reviewed any such website and takes no responsibility for the content
contained therein. Such addresses or hyperlinks (including addresses or hyperlinks to the Club’s own website material)
is provided solely for your own convenience and information and the content of any such website does not in any way
form part of this Report. Accessing such website or following such link through this report shall be at your own risk.

